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1. Introduction 

1.1. Background 

Changes in the Earth’s forest cover impact the water, energy, carbon, and other nutrient 

cycles, as well as the ability of ecosystems to support biodiversity and human economies. 

Knowledge of the patterns and rates of forest-cover change is critical to understand the causes 

and effects of land-use change (Band 1993; Lal 1995; Houghton 1998; Pandey 2002) and to 

manage ecosystems sustainably. A number of national and international programs have called for 

routine monitoring of global forest changes, including the Global Observation for Forest and 

Land Cover Dynamics (GOFC-GOLD) (Skole et al. 1998; Townshend et al. 2004), Global 

Climate Observing System (GCOS 2004), and the U.S. Global Change Research Program 

(USGCRP 1999). An examination of the societal benefits defined by the Group on Earth 

Observations and the Strategic US Integrated Earth Observation System revealed that resolutions 

to all of these issues are dependent on regular and reliable land cover change monitoring 

(Townshend & Brady 2006). 

Coarsely scaled measurements of the Earth’s forest cover have been produced at regional and 

national extents (Skole and Tucker 1993, Tucker and Townshend 2000, Steininger et al. 2001, 

DeFries et al. 2002, Zhang et al. 2005, Huang et al. 2007). However, most of these 

representations are static; and although a substantial proportion of change has been shown to 

occur at resolutions below 250 m (Townshend & Justice 1988), global assessments of forest 

cover and its changes at high-resolution are still in nascent stages of development while local and 

regional products (e.g., Lepers et al. 2005) lack consistency and comparability. Relying on 

national inputs and sampled remotely sensed data, the United Nations Food and Agriculture 

Organization (FAO) Forest Resource Assessment (FRA) carried out limited Landsat-based 

sampling of change detection to assist the estimation of global tropical forest change rates for 

1990-2000 (FAO 2001). However, these sample-based assessments provide inadequate 

quantitative information on the distribution of change (Matthews and Grainger 2002, DeFries et 

al., 2002). Landsat-class resolutions are essential for detecting fine-scale changes, particularly 

those resulting from local anthropogenic factors. 

1.2. Objective 

 The objective of this project was to provide a multi-temporal forest cover Earth Science Data 

Record (ESDR) at global extent and “Landsat” (30 m) and “MODIS” (250, 500, 1000 m, 0.05°) 

resolutions. Requirements for such products are specified in many documents, including the ESDR 

Community White Paper on Land Cover/Land Change (Masek et al. 2006a) and the Global 

Observations of Forest Cover/Land-Cover Dynamics (GOFC-GOLD) Fine-Resolution design 

documents (Skole et al. 1998, Townshend et al. 2004).  This record includes:  

 Global 30 m resolution estimates of surface reflectance for four epochs:1990, 2000, 2005, 

and 2010 derived from the Global Land Survey (GLS) 

 Global 30 m resolution forest cover and change (FCC) estimates from 1990 to 2000, and 

2000 to 2005 with per-pixel level accuracy indicators 
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 Global 250 m, 500 m, 1 km, and 0.05° gridded FCC ESDR products aggregated from the 

30 m resolution FCC product. 

 Tree Cover Product 

 Water Mask 

1.3. Approach 

 Global, spatially and temporally comprehensive forest cover and change Earth Science 

Data Records were produced from 30 m and 250 m resolution satellite data. At 30 m spatial 

resolution, forest cover and changes in and between 1990, 2000, and 2005 were mapped using the 

enhanced Global Land Survey (GLS+) data sets, supplemented with additional images where and 

when the GLS data were incomplete or inadequate for analysis (Tucker et al. 2004, Gutman et al. 

2008, Channan et al. 2015). This effort also included production of surface reflectance ESDRs at 

30 m resolution for 1990, 2000, 2005, and 2010. (Note that the years 1990, 2000, 2005, and 2010 

for all fine-resolution data sets refer to nominal years, but the actual acquisition year of the GLS+ 

data set varies from place to place due to cloud cover and image availability).  

 The fine-resolution ESDRs were produced using algorithms that have been implemented 

or are now implemented in the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS), which was developed through previous NASA projects and includes algorithms for 

geometric orthorectification, radiometric normalization, and data quality screening. 

Atmospherically corrected surface reflectance, which is the basis for many other ESDRs and 

analyses, was generated as an intermediate product. Products to quantify and monitor 

fragmentation were also generated. Efforts were restricted to mapping per-pixel gains and losses 

of forest cover between the epochs at fine spatial resolution and between years for moderate spatial 

resolution. Also, the definition of FCC was restricted exclusively to changes in forest cover and 

not to any change in the type of forest land use (cf. FRA 2000). Like any ESDR, the data produced 

contain uncertainty, but this 15-year record represents a major advance in our understanding of the 

Earth’s changing forest cover. In processing the fine- and moderate-resolution data sets, we 

ensured that the data provide coverage of the greatest extent possible, are internally consistent, and 

that errors and uncertainty are thoroughly characterized. 

1.4. Significance 

 These Earth Science Data Records provide the first and only consistent, global record of 

forest cover changes documenting the period from 1990 to 2005, and they enable the first 

comprehensive assessment of Earth’s forest cover at a scale appropriate to recent changes. The 

data also provide the basis for understanding impacts of forest change on the Earth system, 

including carbon budgets and the hydrological cycle. The moderate-resolution products are of 

particular value to various modeling communities, especially those concerned with regional to 

global carbon modeling (Ojima & Galvin 1994, et al. 1999) and regional hydrological modeling 

(Band 1993, Sahin & Hall 1996, Bounoua et al., 2002). The fine resolution products supports 

habitat analyses and other ecological studies at scales ranging from local to global, which is 

particularly valuable to natural resource managers, especially those responsible for conserving 

biodiversity (Dudley et al. 2005; Hilli & Kuitunen 2005). The protected area subsets of the forest 

change and fragmentation records allow assessment of local conservation efforts as well as the 

broader effectiveness of international environmental and biodiversity agreements.  

2. Methodology 

2.1. Input Data 

2.1.1. Global Land Survey 

http://www.landcover.org/
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 The primary data source for generating the fine resolution ESDRs were the GLS Landsat 

image datasets centered around 1990, 2000, and 2005. The GLS is a partnership between USGS 

and NASA, in support of the U.S. Climate Change Science Program and the NASA Land-Cover 

and Land-use Change (LCLUC) Program. Building on the existing GeoCover dataset developed 

for the 1970s, 1990, and 2000 (Tucker et al. 2004), the GLS was selected to provide wall-to-wall, 

orthorectified, cloud free Landsat coverage of Earth's land area at 30- meter resolution in nominal 

“epochs” of 1990, 2000, and 2005 (Franks et al. 2009, Gutman et al. 2008). The GLS was intended 

to provide one clear-view image acquired during the peak growing season of each epoch for each 

World Reference System (WRS) scene. The 1990 epoch ranges from 1984 to 1997 and is 

composed of 7,375 Landsat-5 Thematic Mapper (TM) images. The GLS 2000 is composed of 

8,756 Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images from 1999 to 2002. The GLS 

2005 is composed of 7,284 gap-filled Landsat-7 ETM+ images and 2,424 Landsat-5 TM images 

acquired between 2003 and 2008. In many cases, however, images had to be selected with a date 

outside this range, mostly due to lack of cloud-free images during the growing season (Franks et 

al. 2009, Gutman et al. 2008, Channan et al. 2015). Because images have been selected from 

somewhat different dates, there are variations in phenology which account for the patchiness of 

image mosaics in some locations (Kim et al. 2011; Townshend et al. 2012). 

 The original GLS data set did not fully cover the Earth’s terrestrial surface in all epochs; 

gap were filled to the highest degree possible with newly available images. No data exist to fill an 

expansive coverage gap over central and eastern Siberia in the 1990 epoch. Smaller, isolated holes 

also persist where coverage is missing in one or several adjacent WRS tiles for individual epochs; 

we obtained the best available Landsat images to fill these gaps. Finally, GLS images acquired 

near or during the leaf-off season, which are not suitable for forest cover change analysis, were 

replaced with images acquired during the local “leaf-on” growing season to use in our forest cover 

change analysis, pending availability (Kim et al. 2011, Channan et al. 2015). 

 A challenge in using GLS data sets for analysis is that many of the GLS images were 

acquired near or during leaf-off seasons. Because the spectral differences between leaf-on and leaf- 

off deciduous forests can be great, automated FCC analysis based on leaf-off images can result in 

widespread, erroneous changes. Prior to classification and forest change analysis, each Landsat 

image was evaluated to determine its phenological suitability for forest cover change analysis. We 

used the NDVI temporal profiles calculated using the Global Inventory Modeling and Mapping 

Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) data record (Tucker et al., 2005) to determine 

whether an image was acquired near or during leaf-off seasons. The GLS 1990, 2000, and 2005 

images were evaluated using the GIMMS record directly. 

 Many non-GLS Landsat images were needed to supplement the GLS dataset to produce the 

fine resolution ESDR products. We developed and implemented an orthorectification algorithm in 

the LEDAPS software that automatically orthorectifies a Landsat image to match the GLS dataset 

(Gao et al. 2009). During extensive validation, residual misregistration errors in the orthorectified 

products were found to be less than one pixel. 

 The GLCF (www.landcover.org) currently houses and distributes the GLS Landsat dataset 

for the 1975, 1990, 2000, 2005 and 2010 epochs. Depending on the epoch, approximately 7–

10,000 Landsat scenes have been compiled to cover the global land area (Gutman et al. 2013; Feng 

et al. 2013).  

 

2.1.2. Digital Elevation Model: ASTER GDEM (v2.0)  

http://www.landcover.org/
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 We used the Global Digital Elevation Model, version 2.0 (GDEM v2.0) as an ancillary 

layer in many analyses. Produced from images acquired by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) the GDEM dataset was jointly released by the 

Ministry of Economy, Trade, and Industry (METI) of Japan and NASA. The 30-meter resolution 

`ASTER GDEM was generated using stereo-pair images collected by the ASTER instrument 

onboard the Terra satellite. ASTER GDEM v2.0 data from the Land Processes Distributed Active 

Archive Center’s (LP DAAC) at lpdaac.usgs.gov. 

2.1.3. MODIS VCF Tree Cover Layer 

 The MODIS Vegetation Continuous Fields (VCF) Tree Cover version 5 dataset 

(MOD44B), was produced at 250 m resolution globally from 2000 to 2010 (DiMiceli et al 2011). 

The MODIS VCF is based on a flexible regression tree algorithm. Although the MODIS Tree 

Cover VCF has been used for a wide range of continental to global scale assessments, many land 

cover changes occur in patches smaller than 250 m resolution (Townshend and Justice 1988). 

Higher resolution continuous field datasets have been generated for limited areas based on Landsat 

data (e.g.,  Homer et al. 2004), but there are no global datasets representing tree cover at resolutions 

finer than that of the MODIS sensor. The MOD44B version 5 dataset can be found on the LP 

DAAC’s Data Pool (https://lpdaac.usgs.gov/data_access/data_pool). 

2.2. Algorithm/Theoretical Description 

 Directional surface reflectance is the most basic remotely sensed surface parameter in the 

solar reflective wavelengths and therefore provides the primary input for many higher-level 

surface geophysical parameters, including vegetation indices, albedo, leaf area index (LAI), 

fraction of absorbed photosynthetically active radiation (FPAR), and burned area. Directional 

surface reflectance is also used in various applications to visually or quantitatively detect and 

monitor changes on the Earth’s surface.  

 Nearly half of the original GLS 1990 dataset did not have correct radiometric gain and bias 

coefficients at the time of data acquisition; thus atmospheric correction and conversion to surface 

reflectance were not possible (Chander et al. 2003, 2009; Townshend et al. 2012). These un-

calibrated GLS images were replaced after the original GLS compilation with substitutes from the 

updated USGS archive within the epoch wherever possible. To perform the selection of 

replacement imagery while minimizing phenological or atmospheric noise, a tool was constructed 

to query the USGS Global Visualization Viewer (GloVis) database (http://glovis.usgs.gov/) for 

appropriate images based on phenological time series of NDVI from MODIS (Kim et al. 2011; 

Townshend et al. 2012). 

 Each image of this enhanced GLS dataset was then atmospherically corrected to surface 

reflectance using LEDAPS (Masek et al. 2006b). Atmospheric inputs and parameterization of 

LEDAPS are described by Feng et al. (2013). Clouds were identified in a spectral-temperature 

space (Huang et al. 2010) and removed from subsequent analysis. This “aggressive” cloud-

detection algorithm’s low rate of omission error makes it suitable for masking pixels from forest 

cover change analysis. Cloud shadows were identified by projecting cloud masks onto a digital 

elevation model through solar geometry at the time of image acquisition (Huang et al. 2010) and 

were also removed from analysis. 

2.2.1. Surface Reflectance Algorithm 

2.2.1.1. Radiometric calibration and estimation of top-of-atmosphere 

reflectance 

The Landsat-7 ETM+ instrument has been carefully calibrated and monitored since launch in 

1999, and the calibration has been stable since shortly after launch (Markham et al. 2003). The 

http://www.landcover.org/
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Landsat-5 calibration history has recently been updated (Chander & Markham 2003, Chander et 

al. 2009) and is compatible with subsequent Landsat-7 ETM+ data. LEDAPS uses updated 

calibration histories to convert 8-bit quantized Landsat data to at-sensor radiance and then to top-

of-atmosphere (TOA) reflectance using solar geometry and instrument band pass information. 

2.2.1.2. Atmospheric correction to estimate surface reflectance  

 Atmospheric correction seeks to estimate surface reflectance by compensating for the 

scattering and absorption of radiance by atmospheric constituents. In practice, atmospheric 

correction is typically achieved by inverting a highly parameterized model of atmospheric 

radiative transfer coupled to a surface reflectance model. For speed and simplicity, the reflecting 

surface is often assumed to be Lambertian. In an idealized case of a Lambertian surface (i.e., with 

angularly uniform reflectance) and in a narrow spectral band (here referred to with the indexi) 

outside of the main absorption feature of water vapor, the top of atmosphere (TOA) signal can be 

written as (Vermote et al. 1997): 

 
where: 
 

ρTOA is the top of the atmosphere reflectance; 

Tg is the gaseous transmission by a gas species (g), e.g., water vapor (TgH2O), ozone 

(TgO3), or other gases, TgOG (e.g. CO2…); 

ρatm is the intrinsic reflectance of the atmosphere; 

Tratm is the total atmospheric transmission (downward and upward); 

Satm is the spherical albedo of the atmosphere; 

A is the atmospheric pressure, which influences the number of molecules and the 

concentration of absorbing gases in the radiation’s path; 

τA, ω0 and PA describe the aerosol properties and are spectrally dependent: 

τa is the aerosol optical thickness; 

ω0 is the aerosol single scattering albedo; 

PA is the aerosol phase function;  

      UH2O is the integrated water vapor content; 

UO3 is the integrated ozone content; 

m is the air-mass, computed as 1/cos(θs)+1/cos(θv); and 

ρS is the surface reflectance to be retrieved. 

 

The geometrical conditions are described by the solar zenith angle (θs), the viewing zenith angle 

(θv), and by Φ, the difference between θs and θv. The effects of water vapor on the intrinsic 

atmospheric reflectance is approximated as: 

 

http://www.landcover.org/
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where ρR represents the reflectance of the atmosphere due to Rayleigh scattering and ρR+Aer 

represents the reflectance of the mixing molecules and aerosols. Accounting correctly for mixing 

and coupling effects is important for achieving high accuracy in modeling the atmospheric effect. 

Eq. (2) conserves the correct computation of the coupling and assumes that the water vapor is 

mixed with aerosols and that the molecular scattering is not affected by water vapor absorption. 

 The transmission, intrinsic reflectance, and spherical albedo terms are computed using the 

vector version of the 6S radiative transfer code (Kotchenova et al. 2006). Since the cost of running 

6S for each pixel would be prohibitive, 6S was run early in the process to generate a look up table 

(LUT) accounting for pressure, water vapor, ozone, and geometrical conditions over the whole 

scene for a range of aerosol optical thicknesses. The LUT was created for each TM band and was 

used both in the aerosol retrieval process as well as in the correction step at the end. 

 Ozone concentrations were derived from Total Ozone Mapping Spectrometer (TOMS) data 

aboard the Nimbus-7, Meteor-3, and Earth Probe platforms. The gridded TOMS ozone products 

are available since 1978 at a resolution of 1.25º longitude and 1.00º latitude from the NASA 

Goddard Space Flight Center Data Active Archive Center (GFSC DAAC). In cases where TOMS 

data were not available (e.g., 1994–1996), NOAA’s Tiros Operational Vertical Sounder (TOVS) 

ozone data were used. Column water vapor was taken from NOAA National Center for 

Environmental Prediction (NCEP) reanalysis data available at a resolution of 2.5 by 2.5 degrees 

(https://rda.ucar.edu/datasets/ds090.0/) over the Landsat era. Digital topography (1 km GTopo30) 

and NCEP sea-level surface pressure data were used to adjust Rayleigh scattering to local 

conditions. 

 Like other atmospheric correction schemes for MODIS and Landsat, the Dark, Dense 

Vegetation (DDV) method (Kaufman et al. 1997; Remer et al. 2005) was used to infer aerosol 

optical thickness (AOT) from each image. Based on the correlation between chlorophyll 

absorption and bound water absorption, this method postulates a linear relation between surface 

reflectance in the atmospherically insensitive shortwave-infrared (SWIR) (2.2 μm) and surface 

reflectance in the affected visible bands. The method then uses this relation to calculate surface 

reflectance for the visible bands and estimate aerosol optical thickness by comparing the result to 

the TOA reflectance. For LEDAPS AOT estimation, each image was averaged to 1-km resolution 

to suppress local heterogeneity, and candidate “dark targets” of TOA reflectance were selected. 

For these targets, correlation was assumed only between the blue (0.45–0.52 μm) and SWIR (2.2 

μm) bands, such that water targets were excluded. The specific relation was derived from an 

analysis of data from Aerosol Robotic Network (AERONET) sites where AOT is measured 

directly. The calculated AOT in the blue wavelengths was propagated across the spectrum using a 

continental aerosol model. A “reasonability check” for the aerosol was performed by analyzing 

the surface reflectance derived in the red band for each 30-m pixel contained in the 1-km grid cell; 

if too many “unphysical” values were found, the aerosol retrieval at this 1-km location was 

rejected. The valid AOT at 1 km were interpolated spatially between the dark targets using a spline 

algorithm. The interpolated AOT, ozone, atmospheric pressure, and water vapor were supplied to 

the 6S radiative transfer algorithm, which then inverts TOA reflectance to surface reflectance for 

each 30-m pixel. 

As noted above, water targets were excluded from the aerosol retrieval. However, interpolation of 

valid (i.e., land) aerosol targets occurs across the entire scene. Thus, the surface reflectance of 

small lakes surrounded by land was likely to be reasonable, while the reflectance of open ocean 

water (far from any valid aerosol target) was likely to be problematic. 

2.2.1.3. Cloud and Shadow Masking 

http://www.landcover.org/
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Removing pixels contaminated by clouds and their shadows was necessary to avoid erroneous 

retrieval of surface reflectance and false detection of forest cover change. LEDAPS implemented 

two cloud masks – a version of the Landsat Automated Cloud Cover Assessment (ACCA) 

algorithm (Irish 2000) and a more aggressive mask based on MODIS spectral tests (Ackerman et 

al. 1998). Shadows were located from the latter using solar geometry and an estimate of cloud 

height based on the temperature difference between known cloudy pixels and NCEP surface 

temperature. A third cloud-masking algorithm has been developed by Dr. Vermote through his 

USGS-funded Landsat Science Team project – “A Surface Reflectance Standard Product for 

LDCM and Supporting Activities”. Quality Assessment codes for this algorithm are listed in Table 

1. Finally, an automated cloud and shadow masking algorithm has also been developed by Huang 

et al. (2010) as part of the TDA-SVM algorithm. 

2.2.2. Tree Cover Algorithm 

 Spatio-temporal estimates of tree-canopy (or simply “tree”) cover provide a biophysically 

relevant, sensible, and consistent basis for monitoring forest cover and change (Sexton et al. 2016). 

The following algorithm and its results have been peer-reviewed and are described by Sexton et 

al. (2013b). 

2.2.2.1. Model 

 Tree cover (C) was estimated as a piecewise-linear function of surface reflectance and 

temperature: 

 
where X is a vector of surface reflectance and temperature estimates, ε is error in the estimates 

produced by f() applied to X, subscript i denotes the pixel’s location in space, indexed by pixel, 

and t refers to its location in time, indexed by year. Continuous measurements such as percent 

cover and surface reflectance are robust to changes in resolution (Gao et al. 2006, Feng et al. 2013). 

Although the data were derived from Landsat, the model makes no specification of scale and thus 

may be calibrated and applied at arbitrary, even different, resolutions between those of Landsat 

(30 m) and MODIS (250 m). To estimate tree cover at 30 m resolution in 2000 and 2005, MODIS-

based, 250 m tree cover estimates were overlaid on rescaled Landsat surface reflectance layers in 

each year, and a joint sample of cover and reflectance variables was drawn to generate a training 

dataset for each Landsat scene in each epoch (Figure 5). Throughout this section, data used to 

estimate model parameters is referred to as “training” data, and data whose accuracy is assumed is 

referred to as “reference” data.  

http://www.landcover.org/
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 Figure 5. Flowchart of tree cover rescaling algorithm. 

 The model was thus fit locally to each scene of the Landsat tiling system of WRS-2 in each 

epoch. The model was fit using the Cubist™ regression tree algorithm and applied using 

CubistSAM, an open-source parser for Cubist (Quinlan 1993). Except for an allowance for 

extrapolation within the range [0,100], our application of regression trees was standard. Cubist, as 

well as regression trees in general, has been found to provide accurate estimates of percent-scale 

land cover attributes in numerous studies (e.g., Sexton et al. 2006, 2013a). Because regression 

trees can over-fit the data and there are often few data points at the extremes of the range of the 

response variable (e.g., tree cover), Cubist gives an option for either estimating within the range 

of the response variable at each node (default) or extrapolating within a specified range. To avoid 

over-fitting to the sometimes small samples at terminal nodes with extreme cover values, we 

allowed for extrapolation within the range of 0-100% tree cover. The fitted model was then applied 

to the original 30 m Landsat data in order to estimate tree cover at the Landsat spatial resolution. 

2.2.2.2. Training Data 

 “Training” tree-cover data for model fitting were derived primarily from the 250-m MODIS 

VCF Tree Cover layer (DiMiceli et al. 2011) from 2000-2005. Random errors (i.e., those which 

were not systematic, e.g., bias) were minimized by using the six-year median of cover for each 

pixel. Land cover changes between 2000 and 2005 were removed by calculating the standard 

deviation of annual tree cover estimates for each pixel over that interval and removing pixels in 

the top 10% of the distribution of standard deviations of each Landsat scene. Because only six 

years of MODIS VCF data were available, we used the median, which is a better representation of 

central tendency than the mean in small samples such as the six values of cover from 2000-2005. 

http://www.landcover.org/
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 Pure (i.e., 0% or 100%) and near-pure pixels are rare in the MODIS data, and tree cover 

tends to be overestimated in areas of low cover, especially agricultural fields. To ameliorate under-

representation of low tree-cover in the training sample, we augmented the MODIS- derived 

reference data with information from the Training Data Automation and Support Vector Machines 

(TDA-SVM) automated classification algorithm (Huang et al. 2008) and the MODIS Cropland 

Probability Layer (Pittman et al. 2010). Cropland Probability and Tree Cover images were overlaid 

within each Landsat scene, and Landsat pixels with crop probability > 0.5 and tree cover < 50% 

were selected. This selection comprised Landsat pixels with either crop or sparse vegetation cover. 

Within the selection, Landsat pixels identified by TDA-SVM as “non-forest” in both 2000 and 

2005 were assumed to be sparsely vegetated and were labeled as 0% tree cover. The remaining 

(i.e., crop) pixels in the selection were ranked by their NDVI values and divided into three sub-

strata: high, medium, and low NDVI. Pixels from each of these sub-strata were randomly sampled 

such that the maximum proportion of Landsat “crop” pixels was the proportion of MODIS pixels 

within the scene whose crop probability was > 60%. All of the sparsely vegetated pixels and the 

sample of crop pixels were then pooled with the MODIS-based reference data to form an ensemble 

training sample of tree cover and reflectance. 
 

2.2.2.3. Post-processing: Water Mask 

 Surface waterbodies were masked from the tree and forest-cover & change data, and the 

surface water layer is a useful input to many other applications. The algorithm below (eq. 4) is 

described by Feng et al. (2015). Water cover was defined as a state of the landcover domain c ϵ C, 

and its probability of occurrence in each pixel was modeled as a function of reflectance and 

topographic covariates (X): 

 P(c = ”water”|X) (4) 

where f is a binary decision tree fit by the See5™ algorithm (Quinlan 1986, 1993). The 

topographic covariates were elevation and slope derived from the ASTER GDEM (Tachikawa 

2011), reflectance covariates were Landsat Band 5 (SWIR) surface reflectance, the Normalized 

Difference Water index (NDWI) (McFeeters 1996) and the Modified Normalized Difference 

Water index (MNDWI) (Xu 2006) to distinguish water from other cover types, as well as the 

NDVI (Tucker et al. 2005) to distinguish water from vegetation specifically. The optimal 

threshold of each index for separating water varies regionally and over time due to mixing and 

local similarities with other cover types (Ji et al. 2009; Jiang et al. 2014). 

Water was detected in each 30-m Landsat pixel with a classification-tree model (Quinlan 1986) 

parameterized through an automated, two-stage procedure. An initial, deductive stage identified 

reference water pixels of varying certainty by comparing multi-spectral water and topographic 

indices to coarse-resolution (MODIS) water estimates. This stage leveraged prior knowledge with 

multiple sources of independent information to stratify the decision space into regions of possible 

water with varying degrees of certainty. An inductive stage then optimizes rules based on high 

resolution estimates of surface reflectance, brightness temperature, and terrain elevation. The first 

stage of classification generates local reference data with varying levels of certainty. The pixels, 

identified as water by multi-spectral indices, were compared with a priori water pixels resampled 

from the 250 m resolution MODIS water mask to the spatial resolution and extent of each Landsat 

image. This comparison resulted in four possible levels of certainty, through which weights were 

assigned to each reference datum. 

http://www.landcover.org/
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Topographic, spectral, and brightness temperature variables were first stratified into generic cover 

types: water, land, snow and ice, and cloud. A loose and a strict threshold—equaling - 0.1 and 

0.1—were applied each to NDWI and MNDWI to distinguish water with low and high certainty. 

Terrain shadows were identified as pixels with hill-shade value <150 (on a scale from 0 to 255) 

and slope >20 degrees. Snow and ice show high reflectance values in the visible and near infrared 

(NIR) bands and low reflectance in SWIR bands, leading to high MNDWI but low to moderate 

NDWI. A strict difference threshold (0.7) was used to reduce confusion of water with snow and 

ice, and a criterion of brightness temperature <1.5 ℃ was also included to further improve the 

discrimination: 

 

MNDWI > NDWI + 0.7 and ρ6 < 1.5 ℃ .       (8) 
 

2.2.3. Forest Cover and Change Algorithm 

2.2.3.1. Forest cover and change from 2000-2005  

The following algorithm and its results have been peer-reviewed and are described by 

Sexton et al. (2015). 

2.2.3.2. Defining forest Cover  

“Forest” is defined as a class of land cover wherein tree (-canopy) cover, c, exceeds a predefined 

threshold value, c*. The probability of belonging to “forest”, p(F), is therefore the probability of c 

exceeding the threshold c* (Figure 11)—i.e., the integral of the density function of c above c*:  

 

 
 

Complementarily, the probability of membership in non-forest is simply 1-p(F). In any location i, 

tree cover ci is estimated by a model f of remotely sensed variables X (Hansen et al. 2003, Homer 

et al. 2004, Sexton et al. 2013b):  

 

 
where β is a set of empirically estimated parameters, and ε is residual error.  

 

Figure 11. Estimation uncertainty of tree and forest cover within a pixel, modeled as a normal probability 
density function of tree cover, with probability of forest (shaded) and non-forest (unshaded) defined relative 
to a threshold of tree cover, c*. 
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Given a joint sample of locations i = [1,2,…n] with coincident true and estimated values of a 

continuous variable such as tree cover (ci,  ̂i), error may be quantified as the Root-Mean-Square 

Error (RMSE), which for large samples approximates the standard deviation of estimates of the 

true value of cover:  

 

 
Thus, given ci, and an estimator (e.g., linear regression) producing estimate  ̂and root- mean-square 
error σi = σ, a Normal probability distribution of possible values of ci may be assumed (Snedecor 
and Cochran 1989, Hastie et al. 2001, Clark 2007): 

 
Given paired estimates of cover and its RMSE, this model provides a probability density function 

of tree cover p(c) (Eq. 13) and therefore the probability of identifying forest for each pixel i (Eqn. 

10). 

2.2.3.3. Change Detection Based on Bi-Temporal Class Probabilities 

 Given the probability of detecting forest in a location i = (x,y) at each of two times t, four 

dynamic classes (D) are possible: stable forest (FF), stable non-forest (NN), forest gain (NF), and 

forest loss (FN). Calculating the probability of each of these dynamics at that location simply 

requires calculating the following joint probabilities: 

 

 
 

where subscripts denote observation times (Figure 12). In practice, the model of error is 

approximate, and so carets (^) denote that the resulting values are estimates. These joint 

probabilities sum to unity at each location i, and because they are merely transformations of the 

original cover and error values in every pixel, they may be mapped geographically without gain or 

loss of information from those estimates. In order to produce a categorical map of change classes, 

each pixel may be assigned either the most probable class at i, or some other criterion of probability 

may be set (e.g., p ≥ 0.9) to filter detection based on certainty of the tree-cover and derived forest-

cover and -change estimates.  
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Figure 12. Categorical (forest) change detection based on probabilistic fields of tree cover at two times, t1 and t2. 

2.2.3.4. Forest Cover and Change from 1990-2000 

 The following algorithm and its results have been peer-reviewed and are described by Kim 

et al. (2014). 

2.2.3.5. Forest Cover Retrieval  

We inferred forest cover in 1990 and change from 1990 to 2000 using a signature-extension 

approach based on stable pixels hind cast from 2000 and 2005 epochs (Figure 13). For the purpose 

of large-area mapping, extrapolation of models beyond the immediate temporal and spatial domain 

in which they were trained has been explored by many researchers (Sexton et al. 2013b; Gray and 

Song 2013). Termed as “generalization” or “signature extension”, this approach has been 

successfully applied for the classification of forest cover (Pax-Lenney et al. 2001) and change 

(Woodcock et al. 2001) using Landsat data. This approach also has been implemented by deriving 

training data from one date and using it to train a classifier on a different image from the same 

path/row scene but different acquisition date (Pax-Lenney et al. 2001). Complementary to the 

traditional signature extension method, Gray and Song (2013) combined a procedure to identify 

stable pixels to deal with irregular time series images.  

 
Figure 13. Hind-cast training and classification procedure to retrieve historical forest cover estimates. SR = 
surface reflectance, C = cover, t1 ≈ 1990, and tn≈ 2000 or 20005. 
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2.2.3.6. Reference Forest/Non-Forest Data 

 Persistent forest (F) and non-forest pixels (N) were sampled from forest cover change maps 

between the 2000 and 2005 GLS epochs and then filtered so that only “stable” pixels—i.e., those 

whose class did not change between the 1990 and 2000 epochs—were retained for analysis. The 

details of the filtering process are presented below.  

 For each WRS-2 scene, an annual rate of forest-cover (F) change, 
𝑑𝐹

𝑑𝑡
, and an annual rate of 

non-forest cover (N) change, 
𝑑𝑁

𝑑𝑡
, were calculated as:  

 

 
 

where F and N are the percentage of forest and non-forest pixels, respectively, and t1 and t2 are 

respectively the acquisition years of the Landsat images for the 2000 and 2005 GLS epochs.  

 The spectral difference (∆SR) - quantified as the Euclidean distance between two pixels 

over time in the spectral domain–was calculated for 1990-2000 (∆SR1) and 2000-2005 (∆SR2). To 

minimize impact from accelerating or decelerating rates of forest cover change between two 

periods, a parameter α was defined as the ratio of the sums of spectral difference of all persistent 

pixels and was calculated as: 

 

 α = ΣΔSR1/ ΣΔSR2, (27) 

 

Given the large number of available pixels within the overlapping portion of two Landsat images 

within the same WRS-2 scene, α was doubled to increase the selectivity of filtering for stable 

pixels. A percentage of forest equaling α x 2 x 100 × 
𝑑𝐹

𝑑𝑡
, and non-forest pixels equaling α x 2 x 

100 × 
𝑑𝑁

𝑑𝑡
 were thus removed per year of difference between 1990- and 2000-epoch images in the 

order of spectral difference (∆SR). Limiting the sample to pixels that were stable from 2000 to 

2005 minimized inclusion of erroneous data, and filtering the most spectrally different pixels from 

1990 to the later epochs removed the pixels most likely to have changed over that period. 

2.2.3.7. Forest Cover Classification  

 Using the sample of stable-pixel locations, a forest/non-forest reference sample was 

extracted from forest cover maps in 2000 and 2005. This sample was then filtered to maximize 

certainty and minimize change between observation periods (Figure 13). 

 Forest cover in circa-1990 was retrieved by a classification-tree algorithm. The probability 

of forest cover, p(F), in each pixel i at time t ≈ 1990 was estimated by a conditional relationship 

(g) to remotely sensed covariates (X): 

 

 
 

where X is a vector of surface reflectance and temperature estimates; subscripts i and t denote the 

pixel’s location in space, indexed by pixel, and time indexed by year. The relation g was 
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parameterized using the C 5.0 ™ classification-tree software (Quinlan 1986), trained on a sample 

of pixels within each Landsat image; the model was thus fit locally within each Landsat WRS-2 

scene. Reflectance and temperature covariates were acquired from the GLS 1990 (Gutman et al. 

2008) and other Landsat images selected from the USGS archive. Whereas retrievals from within 

the period of overlap between the Landsat-5, Landsat-7, and MODIS eras may be based on 

general—even global—models based on phenological metrics that require dense image samples 

within each year (e.g., Hansen et al. 2013), this local fitting instead maximizes use of the single-

image coverage characteristic of much of the history of the Earth observation. Use of 

atmospherically corrected surface reflectance fulfills the conditions for signature extension in 

space (Woodcock et al. 2001, Pax-Lenney et al. 2001).  

 Decision trees and other empirical classifiers are sensitive to bias in training samples 

relative to class proportions within their population of inference (Borak 1999, Carpenter et al. 

1999, Woodcock et al. 2001, Sexton et al. 2013c) and to uncertainty in the training data set (McIver 

2002, Strahler 1980). To minimize these effects, we maintained a large sample with representative 

class proportions by removing a small, but equal fraction of the least stable pixels from each class 

while maintaining the class proportions from reference epoch to training sample. Further, we 

weighted each pixel’s contribution to the classifier’s parameterization based on the pixel’s 

classification certainty in the reference data. A weight w was adopted for each pixel as the 

classification probability of the estimate (pmax) of forest-or non-forest cover (C) from the 2000-

epoch dataset: 

  
The weights were then applied to adjust the objective (i.e., purity) function maximized by the 

iterative binary recursion algorithm employed by C5.0™ (Quinlan 1986). 

2.2.3.8. Forest-cover change 

 Classification trees estimate the probability p(C) of each class in each pixel as a conditional 

relative frequency. Given C = “F” (i.e., “forest”), each pixel was labeled either “forest” or “non-

forest” based on p(F): 

 

 
 

Forest cover change between the 1990 and 2000 epochs was detected given the joint probabilities 

in the 1990 and 2000 epochs (Sexton et al. 2015): 

 

 
 

That is, given the probability of forest P(F) vs. non-forest P(N) in a pixel i in the 1990 epoch (t1) 

and 2000 epoch (t2), four classes were derived: stable forest (FF), stable non-forest (NN), forest 

http://www.landcover.org/


16 

Global Land Cover Facility  www.landcover.org  

gain (NF), and forest loss (FN). A categorical map of change classes was then produced by 

assigning each pixel the class with the highest probability. 

2.2.3.9. Post-processing 

2.2.3.9.1. Hedge rule 

In the forest cover change products, the forest dynamics (i.e., forest loss and forest gain) between 

two periods were determined by checking the joint probabilities of forest and non-forest estimated 

for each of the dates (Kim et al. 2014; Sexton et al. 2015). Dynamic classes are more difficult to 

detect than stable classes, and a criterion is applied to filter the detected change estimates (Kim et 

al. 2014; Sexton et al. 2015). According to the investigation, commission and omission errors 

reached the closest point when the criterion is near 0.6 for both forest loss and forest gain. The 

threshold 0.6 was, therefore, applied to the production of the forest cover change datasets to 

produce unbalanced estimations of the global forest dynamics. 

2.2.3.9.2. Minimum Mapping Unit 

A minimum mapping unit (MMU) was applied to comply with the forest definition and also to 

minimize erroneous detection of change due to spatial misregistration of Landsat images. Raster 

polygons smaller than the threshold MMU (0.27 hectare, or 3 pixels) were replaced by the class 

of the largest neighboring polygon. An eight-neighbor rule was used to delineate patches, which 

includes diagonally connected neighbors. 

 

3. Data Products 

3.1. Dataset Characteristics/Collection Details 

The GFCC collection contains multiple products, each containing different characteristics. Table 

1 below summarizes the attributes of each available data product.  

Table 1. Dataset characteristics for each product in the GFCC collection.  

 

Dataset FR-SR ESDR FR-FCC ESDR FR-WM  Tree Cover 

Product 

Description Fine resolution 

surface reflectance 

earth science data 

record 

Fine resolution 

forest cover and 

change earth 

science data 

record 

Fine resolution 

water mask 

that was used 

in making the 

FCC product 

Tree cover 

ancillary product 

Spatial 

Resolution 

30 m  30 m  30 m 30 m 

Temporal 

Resolution 

NA NA NA NA 

Spatial 

Coverage 

Global Global Global Global 

Temporal 

Coverage 

1990, 2000, 2005, 

2010 

1990-2000, 

2000-2005 

2000 2000, 2005, 2010, 

2015 

Format GeoTIFF GeoTIFF GeoTIFF GeoTIFF 

Data Type 16 bit signed 

integer 

CM: 8 bit 

unsigned integer 

CP: 32 bit 

floating point 

8 bit unsigned 

integer 

8 bit unsigned 

integer 

Projection UTM UTM UTM UTM 

Datum WGS-84 WGS-84 WGS-84 WGS-84 

3.1.1. Fine Resolution Surface Reflectance Earth Science Data Record Product 
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The fine resolution surface reflectance earth science data record (FR-SR ESDR) product contains 

global 30 m resolution estimates of surface reflectance for four epochs centered on the years 

1990, 2000, 2005, and 2010. The data are derived from the Global Land Survey (GLS). The FR-

SR ESDR product was tiled using the WRS-2 tiling scheme. 

3.1.1.1. FR-SR ESDR Product Contents 

The FR-SR ESDR product is distributed in compressed GeoTIFF files, and contains the science 

datasets (SDs) shown in Table 2. Each surface reflectance folder has 13 files associated with it; a 

surface reflectance file for each band, an Atmospheric Opacity file and the Landsat SR Quality 

file. See the example below: 

- p001r012_7dt20110812.SR.b01-b07.tif:  files that contains a GeoTIFFs of the SR 

product for bands 1 – 7. 

- p001r012_7dx20110812.SR.AO.tif: file that contains a single GeoTIFF of the 

atmospheric opacity of band 1. 

- p001r012_7dx20110812.SR.QA.tif:  file that contains a single GeoTIFF of the Landsat 

SR Quality layer. 
Table 2. Description of layers contained in the FR-SR ESDR product. 

Science 

Dataset 

Description Units Data Type Fill 

Value 

Valid Range Scale 

Factor 

SR.b01 Band 1 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b02 Band 2 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b03 Band 3 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b04 Band 4 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b05 Band 5 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b07 Band 7 surface reflectance Reflectance 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.b06 Band 6 TOA Temperature Celsius 16 bit signed 

integer 

-9999 -7000, 7000 0.01 

SR.AO Atmospheric Opacity of 

Band 1 

None 16 bit signed 

integer 

-9999 -2000, 16000 0.0001 

SR.QA Landsat SR Quality Layer None 16 bit signed 

integer 

-1 0, 32767 NA 

 

Table 3: Bit description for the Landsat SR QA file contained in the FR-SR ESDR product. 
Quality Flags Description 

Bit 0 Unused 

Bit 1 Data Quality flag (0 = Valid data, 1 = Invalid data) 

Bit 2 Cloud mask (0 = clear, 1 = cloudy) 

Bit 3 Cloud shadow mask 

Bit 4 Snow mask 

Bit 5 Land mask (0=water, 1=land) 

Bit 6-15 Unused 
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3.1.1.2. FR-SR Naming Convention 

p001r012_7dt20110812.SR.: The surface reflectance data products are named using the 

following convention: p stands for “path”, followed by three digits which represent the WRS-2 

path, then r which stands for “row” followed by the three digits which represent the WRS-2 row. 

Following the underscore there is a number followed by two letters (7dt) which is followed by 

eight digits which represent the time of acquisition (YYYYMMDD) for the input Landsat data 

for which the dataset was generated. Finally, each name contains .SR. which defines the FR-SR 

product. 

3.1.2. Fine Resolution Forest Cover and Change Earth Science Data Record 

Product 

Results of the world’s first global forest cover and change product (version 0) were presented at 

the NASA LCLUC meeting in 2012 and were subsequently published (Townshend et al. 2012). 

The beta release of the forest cover and change was made available in May 2013 to a select user 

group to assess the data and get feedback. The product was improved using the feedback and 

version 1 of the product was released in May 2014.  

3.1.2.1. FR-FCC ESDR Product Contents 

The fine resolution forest cover and change earth science data record (FR-FCC ESDR) product 

contains global 30 m resolution estimates of forest cover change from 1990 to 2000 and from 

2000 to 2005, and includes per-pixel level accuracy indicators. The derived forest cover product 

was tiled using the WRS-2 tiling scheme and kept the native resolution information from the tree 

cover product that was used to generate the forest cover and change product. Each forest cover 

folder has four files associated with it; a browse file, a preview file, the change map file and the 

change probability file. See the example below: 

- p015r033_FCC_19902000_CM.tif:  file that contains a single GeoTIFF of the forest 

cover and change map product. 

- p015r033_FCC_19902000_CP.tif:  file that contains a single GeoTIFF of the forest 

cover and change probability product. 
Table 16: Code values stored in the forest cover and change map product. 

Value Label 

0 No Data 

2 Shadow 

3 Cloud 

4 Water 

11 Persistent Forest 

19 Forest Loss 

91 Forest Gain 
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99 Persistent Non-forest 

  

3.1.2.2. FR-FCC Naming Convention 

p015r033_FCC_19902000: The forest cover and change data products are named using the 

following convention: p stands for “path”, followed by three digits which represent the WRS-

2 path, then r which stands for “row” followed by the three digits which represent the WRS-2 

row. Between the underscores are three letters (FCC) which is the short name for the forest 

cover and change product, followed by eight digits which represent the years for which the 

dataset was generated.  

3.1.3. Fine Resolution Water Cover Product 

The fine resolution water cover (FR-WC) product contains global 30 m resolution estimates of 

water from circa-2000. The water cover product is tiled using the WRS-2 tiling scheme.  

3.1.3.1. Water Cover Naming Convention 

p015r033_WC_20011005: The water cover data product is named using the following 

convention: p stands for “path”, followed by three digits which represent the WRS-2 path, 

then r which stands for “row” followed by the three digits which represent the WRS-2 row. 

Between the underscores are two letters (WC) which is the short name for the water cover 

product, followed by eight digits which represent the date (YYYYMMDD) of the Landsat data 

used to derive the water cover mask.  

3.1.4. Tree Cover Product 

The tree cover data product, though initially an ancillary layer for generating the forest cover and 

change product, quickly became an important source of information for the user community. The 

team started generating the product in late 2012 and distributing the data in early 2013. We have 

processed the GLS 2000, 2005, and 2010 tree cover products. Since there is no MODIS tree 

cover product for the 1990s, there is no tree cover product before the year 2000. Further 

improvement of the tree cover product is ongoing with funding support from NASA Carbon 

Cycle Science and Land Use Land Cover Change programs. 

3.1.4.1. Tree Cover Product Contents 

The derived tree cover product was tiled using the WRS-2 tiling scheme and kept the native 

projection information from the Landsat tile. Each tree cover data folder has six files associated 

with it; data file, a per pixel uncertainty layer, an index file, and a text file. See the example 

below: 

- p015r033_TC_2000.tif: file that contains a single GeoTIFF of the tree cover product. 

- p015r033_TC_2000_err.tif:  file that contains a single GeoTIFF of the uncertainty 

layer for the tree cover product, which provides per pixel uncertainty by WRS-2 tile. 

- p015r033_TC_2000_idx.tif: The data provenance layer which uses numerical values 

associated in the *_idx.txt file to allow the user to understand how many and which file 

each pixel was obtained from to create this single WRS-2 tile. 

- p015r033_TC_2000_idx.txt: The list of input files that were used to generate each 

WRS-2 tile. 
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Table 15: Code values stored in the tree cover data product. 

Value Label 

0-100 Percent of pixel area covered by tree cover 

200 Water 

210 Cloud 

211 Shadow 

220 Fill Value 

 

3.1.4.2. Tree Cover Product Naming Convention 

p015r033_TC_2000: The tree cover data product is named using the following convention: p 

stands for “path”, followed by three digits which represent the WRS-2 path, then r which 

stands for “row” followed by the three digits which represent the WRS-2 row. Between the 

underscores are two letters (TC) which is the short name for the tree cover product, followed 

by four digits which represent the year (YYYY) for which the dataset was generated. 

4. Data Access  

All of the NASA GFCC datasets have been made available via the Global Land Cover 

Facility (GLCF) (www.landcover.org), via the GLCF Earth Science Data Interface (ESDI) and 

File Transmission Protocol (FTP). Developed with support from the NASA REaSON program, 

ESDI is a web-based tool for users to search and download data from GLCF’s archive using 

spatial and non-spatial queries. FTP is used by those who are more familiar with the structure 

of the GLCF archive, those who want to automate data downloading using scripts, and for 

those who use GLCF as a read-only “cloud” storage solution. ESDI’s mapping interface uses 

Java Server Pages (JSP) coupled with MapServer. JSP handles the user clicks for selecting data 

and selecting the type of query and passes the attributes to MapServer for displaying the data 

coverage on the map (Figure 23). This is helpful for users to know if their area of interest has 

data coverage. 

Though the data was initially distributed at GLCF, the data will ultimately be housed at the 

LP DAAC. As of now all of the data generated from this project have been transferred to the 

LP DAAC for archive and can be found at lpdaac.usgs.gov. 
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Figure 23. A user has selected Landsat ETM+ and SRTM dataset for the state of Maryland. The area highlighted in 

darker red is the Landsat based WRS-2 tiles that intersect the Maryland state boundary. 

5. Validation/Uncertainty 

5.1. Validation: Surface Reflectance 

 Landsat surface reflectance products were validated in two ways. Internal AOT estimates 

retrieved by LEDAPS have been compared to measurements taken at AERONET observations 

(Masek et al. 2006b), and surface reflectance was compared to simultaneously acquired MODIS 

daily reflectance and Nadir BRDF-Adjusted Reflectance (NBAR) images (MOD09 and MOD43, 

respectively) (Feng et al 2013). These paired validations provide an internal check on a driving 

parameter of the LEDAPS algorithm (AOT), as well as a consistency check against the thoroughly 

calibrated and validated MODIS products.  

5.1.1. Comparison of Retrieved AOT to AERONET Measurements 

Aerosol optical thickness estimates from pixels processed through LEDAPS were compared to 

coincident measurements from 21 of AERONET sites (Table 2). All AOT values reported are for 

the blue wavelengths. Results suggest reasonable agreement with AERONET observations, and 

the discrepancies between LEDAPS and MODIS reflectance products were generally within the 

uncertainty of the MODIS products themselves—the greater of 0.5% absolute reflectance or 5% 

of the retrieved reflectance value.  
Table 2. AERONET and ETM+ AOT comparisons. 

AERONET Site TM Scene Date AOT blue Aeronet AOT blue ETM+ 

Howland p011r029 2002253 0.4 0.1767 

GSFC p015r033 2001278 0.25 0.257 

MD_Science_Center p015r033 2001278 0.29 0.414 
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SERC p015r033 2001278 0.25 0.294 

BSRN_BAO_Boulder p033r032 2000261 0.05 0.024 

Sevilleta p034r036 2000130 0.12 0.135 

Bratts_Lake p035r025 2000208 0.2 0.161 

Bratts_Lake p036r025 2001217 0.08 0.026 

Maricopa p036r037 2000167 0.09 0.1889 

Tucson p036r037 2000167 0.11 0.056 

UCLA p041r036 2000122 0.2 0.275 

Shirahama p109r037 2001105 0.3 0.344 

Anmyon p116r035 2001266 0.11 0.156 

Moscow_MSU_MO p179r021 2002150 0.17 0.059 

Rome_Tor_Vergata p191r031 2001215 0.49 0.384 

Ilorin p191r054 2000037 1.05 0.921 

Ouagadougou p195r051 2001195 0.275 0.346 

Lille p199r025 2000237 0.29 0.38 

Palaiseau p199r026 2000237 0.22 0.156 

Thompson p033r021 2001260 0.06 0.033 

HJAndrews p045r029 1999275 0.08 0.033 
 

5.1.1.1. Operational Quality Assessment 

 A second validation was based on MODIS surface reflectance estimates. With bands 

corresponding to each of Landsat 7’s solar-reflective bands (Table 3), the MODIS sensor aboard 

the Terra platform follows the same orbit and crosses the equator roughly 30 minutes behind 

Landsat-7 ETM+. MODIS surface reflectance data products (MOD09) have been calibrated and 

validated comprehensively (Vermote et al. 2002, Kotchenova et al. 2006, Vermote and 

Kotchenova 2008) and may be used as a reference to validate Landsat surface reflectance products 

(Feng et al. 2012). We developed an online tool for validating Landsat surface reflectance (SR) 

estimates against coincident MODIS estimates and used it to validate the 2000 and 2005 epoch SR 

products. Initial tests for WRS-2 scenes over eastern Africa showed strong agreement between 

Landsat-7 ETM+ and MODIS SR products, with the majority of R2 value above 0.9.  
  Table 3. Landsat-7 ETM+ spectral bands and their MODIS 

counterparts.  

Landsat ETM+ Band ETM+ Bandwidth (nm) MODIS Band MODIS Bandwidth (nm) 

1 450-520 3 459-479 

2 530-610 4 545-565 

3 630-690 1 620-670 
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4 780-900 2 841-876 

5 1550-1750 6 1628-1652 

7 2090-2350 7 2105-2155 

The uncertainty of the tree cover estimate in every pixel was assessed relative to the 

training data by ten-fold cross-validation. Pixel-level uncertainty was quantified at each terminal 

node of the regression tree and assigned to pixels identified with that node. Because these pixel-

level uncertainties were assessed only relative to their training data, errors between the reference 

data and actual cover were not included at the pixel level. As described in a later section, training 

(MODIS) and output estimates were compared to approximately coincident measurements 

derived from small-footprint lidar measurements in order to assess their accuracy relative to 

more direct measurements of actual cover. We use the term “measurement” to refer to lidar 

derived values of cover – which are calculated without statistical inference – and the more 

general “estimate” to refer to values derived statistically from MODIS and Landsat images. All 

comparisons were made at 250 m resolution, using MODIS estimates from 2005 and Landsat 

estimates from the 2005 epoch. Preliminary analyses comparing Landsat estimates to lidar 

measurements at 30 m resolution were not appreciably different than those reported here, 

although there was a small reduction of correlation believed to be due to spatial misregistration 

of Landsat data.  

Uncertainty metrics were based on average differences between paired model and 

reference (or training) values (Willmott, 1982), quantified by Mean Bias Error (MBE), Mean 

Absolute Error (MAE), and RMSE: 

 

where Mi and Ri are estimated and reference tree cover values at a location i in a sample of size 

n. After modeling the relationship between M and R by linear regression, the (squared) 

difference was disaggregated into systematic error (MSES) and unsystematic error (MSEU) based 

on the modeled linear relationship (Willmott 1982): 
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Where  is the cover value predicted by the modeled relationship (Willmott 1982). Accuracy is 

thus quantified by the difference between the trend of model over reference cover, and precision 

is quantified by the variation surrounding that trend. MSES and MSEU sum to Mean-Squared 

Error (MSE), and therefore:  

 

(Willmott 1982). To maintain consistency, we report the square roots of MSES and MSEU, i.e., 

RMSES and RMSEU, in units of percent cover. 

5.1.1.2. Reference Data 

 For comparison to the 2005 epoch estimates, small-footprint, discrete-return lidar 

measurements were collected at four sites in a range of biomes (Figure 6): (1) La Selva Biological 

Station and its vicinity, Costa Rica (CR) in 2006; (2) the Wasatch Front in central Utah (UT), USA 

in 2008; (3) the Sierra National Forest in northern California (CA), USA in 2008; and (4) the 

Chequamegon-Nicolet National Forest, Wisconsin (WI), USA in 2005.  

 
Figure 6. Distribution of lidar-based reference sites, overlaid on global biomes (W 2001). Only the major habitat 

types intersecting reference sites are shown. 

 All lidar measurements were acquired during the growing season of each respective site, 

with mean point densities > 1 return/m2. The Costa Rica dataset, collected in 2006, is described by 

Kellner et al. (2009), and the Wisconsin dataset is described by Cook et al. (2009). Figure 7 shows 

an example of the 3-dimensional distribution of lidar measurements in the California site. All sites 
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were assessed visually for obvious changes in cover between data acquisitions; in the WI dataset, 

obvious cover changes due to forest harvesting between Landsat and lidar acquisitions (totaling 

21 pixels) were delineated manually and removed. 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Three-dimensional distribution of a 250x250-m subset of the lidar measurements from the California 

reference site in nadir (left) and oblique (right) perspectives. Data points, which were sampled with intensity of 

approximately 13 points/m2, are classified by height into tree (yellow) and non-tree (pink) classes. The red box 

in the upper-right corner shows the area of one 30-m Landsat pixel. 

 Tree cover (C) was calculated from lidar returns by dividing the number of returns above 

a criterion height by the total number of returns within a 10-m radius: 

      C = 
𝑛ℎ

𝑛
       (16)  

where n is the number of returns and nh is the number of returns above the specified height (h) 

(Korhonen et al. 2011). In accordance with the International Geosphere-Biosphere definition of 

forests, we specified the criterion nh = 5 meters. Following calculation of tree cover at 10 m 

resolution, rasters were aggregated to 250 m resolution by averaging the values within the extent 

of each 250 m pixel. Only height of the (discrete-return) lidar posts was used to calculate canopy 

height. 

5.1.1.3. Consistency of Landsat- and MODIS-based (VCF) tree cover 

estimates 

 The relationship between Landsat estimates of tree cover and the MODIS data on which 

they were based was very strongly linear, near parity, and consistent among biomes. Relative to 

the MODIS estimates, Landsat estimates exhibited MBE of -6%, MAE of 8%, and RMSE of 10% 

cover in the biome samples of 2005 data. The modeled linear relationship explained 88% of the 

variation between the two datasets, and RMSE was equally partitioned between systematic and 

random components, with both RMSES and RMSEU equaling approximately 7% cover (Table 7). 

Although significantly different from zero, the intercept of the linear relationship was relatively 

small (4.5%). The global Landsat-MODIS VCF comparison for 2000 and 2005 epochs 

corroborated the aggregated site-specific results, with little difference between epochs. Paired 

Landsat- and MODIS-based estimates were distributed predominantly along the 1:1 line, with a 

slight under-estimation of Landsat- relative to MODIS-derived values of cover. Errors were 

slightly greater in the 2005 than in the 2000 data (RMSE = 8.9% in 2000; RMSE = 11.9% in 2005), 

and the greatest differences were confined largely to the humid tropics, suggesting their origin 

might lie in the effects of remnant clouds in the Landsat images.  
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Table 7. Linear regression summaries for pixel-level canopy cover estimates in four study areas. RMSEu is 
mean “unsystematic”, or “residual” error between original and calibrated measurements, and RMSEs is the 
“systematic” error remaining between calibrated and reference measurements (see text for full explanation). 
Unless otherwise noted, all coefficients are significant at Pr(>|t|) < 0.01. 
 

All Sites 

Regression Intercept (S.E.) Slope (S.E.) R2 RMSEs RMSEu 

MODIS ~ lidar 12.429 (0.549) 0.714 (0.008) 0.705 10.097 13.462 

Landsat ~ MODIS 4.530 (0.323) 0.825 (0.005) 0.882 7.063 7.473 

Landsat ~ lidar 10.016 (0.384) 0.668 (0.006) 0.811 14.637 9.406 

Costa Rica (n=2044) 

Regression Intercept (S.E.) Slope (S.E.) R2 RMSEs RMSEu 

MODIS ~ lidar 29.621 (0.756) 0.561 (0.010) 0.628 11.242 10.573 

Landsat ~ MODIS 12.477 (0.572) 0.710 (0.008) 0.804 9.765 6.066 

Landsat ~ lidar 24.593 (0.380) 0.517 (0.004) 0.850 16.640 5.312 

California (n=289) 

Regression Intercept (S.E.) Slope (S.E.) R2 RMSEs RMSEu 

MODIS ~ lidar 23.963 (1.835) 0.517 (0.042) 0.348 6.610 8.226 

Landsat ~ MODIS 16.031 (1.548) 0.603 (0.033) 0.539 4.583 5.687 

Landsat ~ lidar 22.248 (1.328) 0.506 (0.030) 0.494 5.893 5.955 

Utah (n=425) 

Regression Intercept (S.E.) Slope (S.E.) R2 RMSEs RMSEu 

MODIS ~ lidar 6.069 (0.453) 0.365 (0.016) 0.552 13.556 5.500 

Landsat ~ MODIS -1.066 (0.372) 0.807 (0.022) 0.755 4.160 3.784 

Landsat ~ lidar 3.316 (0.453) 0.318 (0.016) 0.483 16.766 5.492 

Wisconsin (n=655) 

Regression Intercept (S.E.) Slope (S.E.) R2 RMSEs RMSEu 

MODIS ~ lidar 22.759 (0.888) 0.390 (0.013) 0.561 21.456 8.708 

Landsat ~ MODIS 3.128 (1.384)* 0.941 (0.028) 0.619 0.856 9.699 

Landsat ~ lidar 17.119 (0.809) 0.508 (0.012) 0.728 18.185 7.849 

 

5.1.1.4. Accuracy of Landsat-based Tree Cover Estimates Relative to Lidar 

Reference Data 

http://www.landcover.org/


27 

Global Land Cover Facility  www.landcover.org  

 Across the four sampled biomes, the correspondence of Landsat-based estimates of tree 

cover to reference lidar measurements was similar to the relationship between MODIS-based 

estimates and lidar-based measurements. Across the biomes, RMSE of Landsat estimates relative 

to lidar-measured cover was 17%, with MAE of 15% and MBE of -11% cover. However, the 

overall linear relationship between Landsat estimates and lidar measurements was stronger (R2 = 

0.81) than that of MODIS estimates relative to lidar measurements (R2 = 0.71). This strong linear 

trend resulted in a greater dominance of systematic (RMSEs = 15%) over unsystematic, or random 

noise (RMSEU =9%) errors in the Landsat estimates compared to MODIS, suggesting a greater 

potential for empirical calibration of Landsat estimates than is possible for the MODIS dataset. 

Although still present, saturation of Landsat estimates relative to lidar measurements was reduced 

slightly compared to the saturation seen in MODIS-based estimates. Landsat estimates reproduced 

the spatial pattern of tree cover in most sites with greater fidelity than did MODIS estimates. 

Landsat estimates resolved greater spatial variation in tree cover than did the relatively coarse 

MODIS estimates. 

5.2. Validation: Forest Cover and Change 

5.2.1. Method 

5.2.1.1. Sampling  Design 

   Accuracy assessment employed a two-stage, stratified sampling design (Cochran, 1977, 

Sannier et al. 2014, Särndal et al. 1992, Stehman, 1999, Stehman & Czaplewski, 1998). To 

increase the representation of rare classes, reference data were sampled across the global land 
area in two stages, first selecting Landsat WRS-2 tiles within predefined global strata and then 

sampling pixels within each selected tile. The spatial location of sample points was held constant 
for all time periods. 

5.2.1.2. Biome Definition 

  Biome-level stratification was based on the 16 major habitat types delineated by the 
Nature Conservancy (TNC) Terrestrial Ecoregions of the World dataset (TNC, 2012). Excluding 

deserts and xeric shrublands, inland water, and rock & ice, we merged the major habitat types 
into eight forest and non-forest biomes (Table 8). Among the 7,277 WRS-2 tiles in the 8 biomes, 

the 5,294 tiles completely contained within biome were assigned to their respective biomes, and 
tiles spanning biome boundaries (including land/ocean boundaries) were excluded. This reduced 

the land area for each of the eight biomes available for sampling by 18.7 - 58.2% for each biome 
(Table 8). 

Table 8. Reclassification of TNC major habitat types (TNC, 2012) into biome strata. The land area for 
each biome is reported in the “Land area (km2)” column, and the percentage of that area reduced by 
excluding tiles spanning boundaries is reported in “Spanning biome WRS-2 tiles (%)” column. The 
percentage of edge pixels is reported in the “Edge pixels (%)” column. 

Biome 
Strata 

TNC Biomes Land 
Area 
(km2) 

% Reduction 
(WRS-2 Tile 
Spanning 
Biomes) 

% Reduction 
(Edge Pixels) 

Tropical 
Evergreen 
Forests 

Tropical and Subtropical Moist Broadleaf 
Forest 
Mangroves 
Tropical and Subtropical Coniferous 
Forests 

16,608,638 25.2 9.7 

Tropical 
Deciduous 
Forests 

Tropical and Subtropical Dry Broadleaf 
Forests 
 

6,780,454 18.7 8.4 

Tropical 
Non-forest 

Tropical and Subtropical Grasslands, 
Savannas, and Shrublands 

15,296,731 28.0 5.5 
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Flooded Grasslands and Savannas (23° S – 
23°N) and Montane Grasslands and 
Shrublands  (23° S – 23°N) 

Temperate 
Evergreen 
Forests 

Temperate Conifer Forests 3,843,538 50.9 13.2 

Temperate 
Deciduous 
Forests 

Temperate Broadleaf and Mixed Forests 
Mediterranean Forests, Woodlands, and 
Scrub 

14,013,894 29.1 9.4 

Temperate 
Non-
Forest 

Temperate Grasslands, Savannas, and 
Shrublands 
Flooded Grasslands and Savannas (23° S – 
23°N) and Montane Grasslands and 
Shrublands  (23° S – 23°N) 

2,918,100 58.2 2.0 

Boreal 
Forests 

Boreal Forests/Taiga 20,381,706 24.9 12.3 

Boreal 
Non-forest 

Tundra 21,484,150 21.1 3.8 

[Excluded] Deserts and Xeric Shrublands Inland 
Water 

   

5.2.1.3. Response Design 

    Forest or non-forest cover in each pixel and each epoch was visually identified by 

experienced image analysts using a web-based tool presenting the GLS Landsat image(s) 

covering each location, as well as auxiliary information, including: Normalized Difference 

Vegetation Index (NDVI) phenology from MODIS, high-resolution satellite imagery and maps 

from Google Maps, and geotagged ground photos (Figure 16) (Feng et al., 2012b). The Landsat 

images were presented in multiple 3-band combinations—e.g., near infrared (NIR)- red (R)-

green (G), R-G-blue (B), and shortwave infrared (SWIR)-NIR-R. The extent of each selected 30-

m Landsat pixel was extracted in the Universal Transverse Mercator (UTM) coordinate system 

and delineated in both the Landsat image and in Google Maps to facilitate visual comparison. 

The NDVI profile was derived from the 8-day composited surface reflectance data (MOD09A1; 

Vermote & Kotchenova 2008; Vermote et al. 2002)with nearest-neighbor interpolation, 

excluding data labeled as cloud or shadow in the MOD09A1 Quality Assurance (QA) layer 
(Feng et al., 2012b). 

The selected points were randomly distributed among 12 experts for interpretation (Table 

9). Experts visually checked the information provided by the tool and labeled each point either 

“forest” or “non-forest” for each of the 3 epochs individually. Points with Landsat pixels 

contaminated with cloud or shadow were labeled as “cloud” and “shadow” respectively. If an 

expert was unable to identify the cover of a pixel, he or she was instructed to label it as 
“unknown” for further investigation.  

Over 1,000 collected points were located in each decile of tree cover, with nearly uniform 

sample size across the range of tree cover > 10% cover. Of these points, > 90% were labeled as 

forest or non-forest by visual interpretation of TM or ETM+ images in the 1990, 2000, and 2005 

epochs, with only 6 % of the points remaining as “unknown”. Less than 1 % of the points across 

all epochs were interpreted as “cloud” or “shadow”. The distribution of the unknown points in 

the 2000 epoch revealed that these difficult points were rare (< 4 %) in areas of low or high tree-
canopy cover but were much more frequent in areas with 5 – 35 % tree cover. 
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Res from Google M 

Figure 16. The web-based tool for visually identifying forest cover at a selected point (Feng et al. 2012). 

Table 9. Sample sizes of human-interpreted reference data for circa1990, 2000, and 2005 epochs. 

Type Number of points 

 1990 2000 2005 

Nonforest 10,657 11,244 11,929 

Forest 15,221 15,194 14,448 

Unknown 2,025 1,543 1,494 

Cloud 9 26 30 

Shadow 30 28 28 

 

5.2.1.4. Validation Metrics 

Based on the independent reference sample, the labeled points were used to quantify the 

accuracy of the global forest-cover and -change layers using validation metrics weighted by area 
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(Card 1982; Congalton 1991; Stehman & Czaplewski 1998; Stehman 2014). For each reference 
datum, i, the agreement between estimated and reference coveror change, y, was defined:  

 

Weights were applied to the data to remove the effect of disproportional sampling, by 

standardizing the inclusion probability of each observation proportional to the area of each 

stratum (Sexton et al., 2013b). Each point’s weight, , was calculated as the inverse of the joint 
standardized probability of its selection at the tile- and pixel-sampling stages:  

 

elements of the diagonal of the confusion matrix—divided by the weighted total number of 

points ( ):  

 

The conditional probability of the estimate given the reference (i.e., human-interpreted) class, 

P(c|ĉ) (i.e., User’s Accuracy, UA) and the conditional probability of the reference class given the 

estimate P(ĉ|c) (i.e., Producer’s accuracy, PA) were calculated as:   

where 

n ̂were the points identified as type c (e.g., forest, non-forest, forest gain, or forest loss) by the 

GLCF layers, and nc were the points identified as type c by the reference (Stehman, 2014). The 
inverse of P(c|ĉ) and P(ĉ|c) were interpreted as errors of commission and omission respectively. 

The variance of the accuracy metrics is described below. The points in each forest/non-

forest status stratum were randomly selected. Hence, the variance of the OA for the stratum and 

the UA and PA of class c (i.e., forest and non-forest for forest cover; FF, FN, NF, and NN for 

forest-cover change) in the stratum were calculated following (Congalton and Green 2010, p116-
119; Olofsson et al. 2014): 

where was the number of points in the error matrix at cell (i, j), and  +and +  were respectively 
the summaries of rows (i) and columns (j) in the matrix. 
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The estimated variances ( (  )) for the accuracy metrics (i.e., OA, UA, and PA) of the globe and 
each biome were calculated following (Cochran 1977):  

where a 

biome (G) consisted of   biome-change strata. Each biome-change stratum (k) covered   area and 
included   selected WRS-2 tiles. The weight for each tile (j) was calculated as:  

 

where   is the central latitude of tile (j). A tile (j) consisted of   forest status strata, and the 

accuracy for the tile (  ) was estimated:   

 

where was the weight for a forest status stratum (i) within tile (j):   

 

where    was the number of pixels in stratum (i) of tile (j). The mean (  ) of accuracy (  ) for tile 
(j) was calculated:   

 

The standard error (SE) of each accuracy metric was calculated as the square root of its varianc

 

5.2.1.5.  Accuracies of Forest Cover Layers 

Accuracy of forest-cover detection was consistently high across all biomes and epochs, 

with OA = 91% (SE≈1%) in each of the 1990, 2000, and 2005 layers (Figure 11, Table 10). 

Commission errors (CE = 1 - P(c|ĉ)) and omission errors (OE = 1 - P(ĉ|c)) were < 10% for both 

forest and non-forest classes in all epochs, for which SE < 2.3%. The original, unadjusted 

estimates showed a bias toward detection of non-forest, with the forest class having a higher rate 

of omission errors (<21%) than commission errors (<3%) and the non-forest class having a 
higher rate of commission errors (<13%) than omission errors (<2%) in all epochs and biomes. 

The largest overall accuracies (OA) were found in temperate forest and non-forest, 

tropical evergreen, and boreal non-forest biomes—each of which had OA > 90% (SE < 5%). OA 

were slightly lower in boreal forests (83% < OA < 89%); OA of tropical deciduous forest ranged 

from 80.7% to 84%; and OA of tropical non-forest ranged from 83.2% to 84.1%. Standard errors 

of OA were lowest (<1.6%) in evergreen forests and temperate nonforest, slightly higher in 

deciduous and boreal forest (<2.9%), and highest in boreal and tropical nonforest (<5%). 

Evergreen and boreal forests had the lowest rate of omission error (OE < 21%; SE < 3.5%) for 
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the forest class, followed by deciduous forests (24% < OE < 55%; SE < 9.6%) and non-forest 

biomes (59% < OE; SE < 7.6%). The non-forest class had low omission error (OE < 10%; SE < 

8.5%) in all biomes, and its commission error rate was larger in the forest biomes (≤ 32.3%; SE 
< 6.3%) than the non-forest biomes (≤ 18.3%; SE < 3.3%). 

These estimates of accuracy are likely conservative, given our exclusion of treeless 

biomes and the uncertainty of reference data generated by identifying forest cover by visual 

interpretation of satellite images (Montesano et al., 2009; Sexton et al., 2015a). Montesano et al. 

(2009) found that human experts achieved 18.7% RMSE in visual estimation of tree cover in 

high-resolution imagery, and Sexton et al. (2015a) found that visual confusion was greatest near 

the threshold of tree cover used to define forests, especially when interpreting change. To 

investigate the relation between accuracy and tree cover, OA of forest/non-forest cover in 2000 

was plotted over the range of coincident tree cover estimated by the NASA GFC tree-cover 

dataset (Sexton et al., 2013a). A distinct concavity was evident in the relation, which reached its 

minimum near the 30% tree-cover threshold used to define forests. The OA was large (> 80%) 

where tree cover was < 0.1 or > 0.35. Commission and omission errors were also investigated in 

relation with tree cover (Figure 20). Commission error of the forest class was < 10% except 

among pixels with tree cover < 0.35, where the commission error was < 20%. Omission error of 
forest was < 20% in areas with > 0.4 tree cover but increased in areas of sparse tree cover. 

5.2.1.6.  Accuracies of Forest Change Layers 

Globally, overall accuracy (OA) of the 1990-2000 forest-change layer equaled 88.1% (SE 

= 1.19%), and OA = 90.2% (SE = 1.1%) for the 2000-2005 forest-change layer (Table 12). In 

each period and biome, OA ≥ 78.7% (SE < 5%). The global accuracies and standard errors of 

stable forest (FF) and stable non-forest (NN) classes were similar respectively to those of the 

stable forest and non-forest classes in the 1990, 2000, and 2005 layers, but the change classes—

i.e., forest loss (FN) and forest gain (NF)—had larger error rates than the static classes in the 
respective epochs. 

Commission and omission errors for forest loss were between 45% and 62% globally, 

with SE between 1.72% and 23.48%. Forest-loss was detected most accurately, with errors 

dominated by commission, in temperate and tropical evergreen forest biomes (PA ≥ 71.7%; UA 

≥ 49.6%). This was likely due to relatively minimal impact of vegetation phenology on canopy 

reflectance in evergreen forests. Whether in temperate or tropical regions, detection of forest loss 

was more accurate in evergreen forests than in their deciduous counterparts (30% ≤ PA < 39%; 

36.1% ≤ UA ≤ 50.1%). In non-forest biomes, accuracy of forest-loss detection was very low and 

dominated by omissions, but the rarity of forests and their loss in these biomes made the impact 
of these errors on overall accuracy small. 

    Forest gain was consistently the most difficult dynamic to detect, with OE and CE each 

> 60% in all epochs (SE < 17%). This was likely due to the long traversal of intermediate tree 

cover during canopy recovery from disturbance, compounded by the uncertainty of human 

identification of change (Sexton et al. 2015a). Producer’s accuracies tended to be largest in 

tropical evergreen forests (24.9% ≤ PA ≤ 75.7%), where canopy recovery following disturbance 

is fastest, and smallest in non-forest biomes (PA < 19%; UA < 17%), where recovery is slower 
and locations spend more time in intermediate ranges of canopy cover. 

    The effect of tree cover on accuracy was investigated using the 2000-2005 forest 

change layer. Similar to that of the 2000 forest-cover layer, a distinct concavity  was evident in 
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the relationship between overall forest-change accuracy and tree cover, and accuracy was lowest 

between 0.2-0.3 tree cover. Commission and omission errors of stable forest and non-forest in 

relation to tree cover were similar to those of forest and non-forest in the static layers. The 

commission and omission errors were large in areas with  tree cover < 0.35 and decreased to < 

60% in areas with tree cover > 0.35. Commission and omission errors of forest gain were both 

correlated to tree cover. The omission error was < 45% and commission error was < 70% in 
areas with 0.3 - 0.6 tree cover but > 50% in high or low tree cover.  

Table 10. Percent accuracies of the 1990, 2000, and 2005 forest-cover layers relative to human- interpreted 

reference points. The standard error associated with each accuracy is reported in brackets. 

 1990 2000 2005 

Type P(c|ĉ) P(ĉ|c) P(c|ĉ) P(ĉ|c) P(c|ĉ) P(ĉ|c) 

F 97.2 (1.99) 79.8 (1.05) 98.2 (1.24) 79.9 (1.09) 97.9 (1.15) 79.8 (1.06) 

N 87.8 (1.93) 98.5 (1.10) 87.6 (2.28) 99.0 (1.19) 87.9 (2.20) 98.8 (1.44) 

OA 90.9 (1.03) 91.1 (0.96) 91.2 (1.01) 

 

6. Caveats/Known Issues 

data sould not be used? 
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